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Abstract— The performance bottleneck of NAND flash-based storage
devices (NFSDs) is mainly due to the slow NAND flash memories (NFMs).
One of the well-known techniques for overcoming the bottleneck is an
interleaving technique. This technique aims to maximize the utilization of
high-speed channels by allowing slow NFMs to operate in parallel. Typi-
cally, NFSDs hierarchically apply the multilevel interleaving technique—
channel, way, and die-level. While channel/way-level interleaving has
already matured, die-level interleaving faces practical difficulties. The
most critical issue is that it is not easy to identify individual die status
because multiple dies in a package share a status pin, because of the
form factor and cost issues of NFSDs. For this reason, NFSD has
to issue a read status (RS) command to check the die status, which
requires nonmarginal performance overhead. Moreover, the RS overhead
attenuates the advantages of channel sneaking (CS) introduced in this
brief to accelerate interleaving. To tackle this issue, we propose interrupt-
based CS (ICS) that maximizes the impact of die-level interleaving while
paying marginal overhead for identifying the die status. ICS performs
on-demand die-status monitoring with minor modification of the NFM
interface. We prove its effectiveness by conducting experiments in which
ICS improves the performance by 19.8% over the typical scheme.

Index Terms— Memory interface, NAND flash memory, storage
device.

I. INTRODUCTION

NAND flash memory (NFM) has emerged as one of the most
dominant storage media because of advantages such as its shock
resistance, low power, and rapid response time. In addition, multiple
level cell (MLC) and vertical NFM technologies steeply decline cost-
per-bit. These advantages have allowed NAND flash-based storage
device (NFSD) applications to scale from mobile systems to high-end
server systems. As most of these systems require large storage space
capacity, most NFSDs are equipped with multiple NFMs. Under this
circumstance, NFSD has resolved the latency and bandwidth issues
by employing channel, way, and die-level interleaving techniques.
These multilevel interleaving techniques effectively exploit multiple
NFMs by overlapping their operations.

As shown in Fig. 1(a), NFSDs typically employ multiple shared
buses called channels. Each channel is shared by multiple NFMs.
The channels are independent so that NFMs connected to different
channels can be operated in parallel, a process called channel-
level interleaving. Therefore, the overall bandwidth is proportional
to the number of channels. For each channel, way-level interleaving
overlaps the operations of multiple NFMs to minimize the idleness
of the channel. This is very effective for hiding the long latency
of NFMs.1 Way-level interleaving can be further extended to die-
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(tBER) range from tens to thousands of micro seconds.

Fig. 1. (a) NFM array with multiple dies. (b) Die-level interleaving.

level, as a single way consists of multiple dies. Fig. 1(b) shows
the interleaving of read or write requests for one way, and slashed
boxes represent command or address sets. While a die is under the
preparation of the response for a request, the channel can be utilized
for servicing requests to another die. Multiple dies in a way share the
data buses as well as a chip enable (CE) pin, while each way has a
separate CE pin. For instance, the commercial dual-die NFM package
offers only one IO port and a CE pin. Though both way-level and die-
level interleaving can overlap the operations of multiple dies, die-level
interleaving that operates dies within a package in parallel has some
restriction in open NAND flash interface (ONFI) specification [1].
Such multilevel interleaving techniques have dramatically improved
the performance of NFSDs by handling IO requests in parallel.

To maximize the effect of the interleaving techniques, NFSDs are
required to efficiently schedule an enormous number of channels,
ways, and dies. For this purpose, many studies have proposed
page allocation schemes [2], [3], queueing mechanisms [4]–[8], and
reordering schemes [9], [10]. These techniques mainly focus on
how to effectively allocate or schedule IO requests to the multilevel
NFM architecture. Unfortunately, they have paid little attention to the
command overhead for identifying the idleness of individual dies for
die-level interleaving. Such overhead comes from the property of the
typical NFM interface, as each way supports only a single status pin
common to all dies within it. Moreover, state-of-the-art interleaving
techniques cannot fully hide the long latency of NFMs, as the busy
waiting time for processing a single read or write request increases
owing to the growth of the page size.2 Though the NFM interface
speed has increased, the host interface speed has also increased.3

Therefore, the response of a single request can still be delayed.
To cope with this issue, we extend the data burst pause opera-

tion specified in ONFI. The NFM controller (NFMC) supporting
this operation can arbitrarily suspend data transfer and issue read
status (RS) commands to each individual die to check its status.
During this data suspension, once a die is identified in ready status,
the NFMC can immediately drive cell operations such as tR or tPROG
by issuing commands without waiting for the entire data transfer.
Therefore, the time for a die to stay in ready status can be shortened.
We call a series of these operations as channel sneaking (CS).

2The page size of NFM has increased from 2 to 16 KB.
3The NFM interface speed has increase 200 to 800 Mb/s and the host

interface speed has increased from 600 MB/s of SATA III to 3.91 GB/s of
peripheral component interconnect express (PCIe) GEN3 4lane.
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The suspended data transfer is resumed after CS. A simple and
intuitive implementation of CS is polling-based CS (PCS), which
periodically checks the die status by issuing RS commands. PCS is
fully compatible with the typical NFM interface. However, the benefit
of PCS is lessened as the overhead of issuing RS increase. The RS
overhead is inevitable, as all dies in a single way share two pins
that are important for die interleaving, i.e., CE and ready/busy (R/B),
because of the form factor, pin count limit, and cost issue. In other
words, pin sharing implies that a certain command (in this case,
RS) should be asserted for targeting a specific die. To overcome
this issue, we propose another type of CS called interrupt-based CS
(ICS) to reduce the overhead of RS with a minor modification of the
conventional NFM interface. The impact of ICS will increase, as the
timing parameters of RS are maintained as constants [1], while data
transfer time is shortened owing to the advance of process technology.

The remainder of this brief is organized as follows. First, we review
the motivation and related studies in Section II. In Section III,
we discuss the limitations of CS and the details of ICS to overcome
them. Finally, we show the effectiveness of ICS through experiments
in Section IV, followed by a conclusion in Section V.

II. MOTIVATION AND RELATED WORKS

A. Motivating Example
It is obvious that multilevel interleaving improves the through-

put of NFSDs. However, a cost overhead is experienced at some
levels. Channel-level interleaving requires additional parallel IO pins
(16 pins per channel for 8-bit data in DDR2/3 interface), and way-
level interleaving requires multiple CE and R/B signals. On the other
hand, die-level interleaving operates with the shared IO bus and com-
mon CE and R/B pins. Therefore, maximizing die-level interleaving
is one of the most appropriate solutions from both performance and
implementation cost perspectives. This observation motivates us to
further investigate optimization of die-level interleaving.

Suppose an NFSD that has one channel with three ways with each
way consisting of two dies. Fig. 2(a) shows how IO requests are
interleaved with ways and dies over time when read requests are
issued after write requests. The T period of Fig. 2(a) is enlarged to
the transaction-level behavior of the NFM channel in Fig. 2(c). This
channel behavior is the same with a typical NFM interface without CS
(WOCS), and Fig. 2(b) shows the legend for first row of Fig. 2(c) that
shows the timing diagram of channel, and the numbers of way and die
that are the monopolizing channel. The timing diagram of channel is
subdivided into the die behavior of Way0 in the second row. Die1 of
Way0 first is in tPROG for W2, while Die1 of Way1 transmits data
through for R1. After these transactions are committed to NFM
interface, the read transaction of Way0–Die0 for R3 is enqueued
and performs the operation for tR, while Die1 of Way2 transmits
data for R2. Before starting a transaction, the NFMC issues a set
of commands to the NFMs to prepare for each transaction. The
command set includes not only primary commands, such as erase,
read, and program, but also auxiliary commands, such as set feature,
get feature, and RS. Among these commands, RS is an inevitable
command to verify the pass/fail of the program and erase, as well as
monitor the ready or busy status of the dies. The NFMC periodically
sends RS to dies in a polling fashion when the channel is idle. One
RS monopolizes the channel for at least 130 ns in the DDR2/3.

Since multiple dies in a way share an R/B pin, the R/B signal
value of a way is “0” (busy) if at least one die is in cell operation.
Therefore, to identify which die is busy, ONFI provides an enhance
version of RS called RS enhanced (RSE). More specifically, RSE
is issued with row addresses to specify the target die. This modifi-
cation lengthens the command issuing time by 190 ns in DDR2/3.
In Fig. 2(c), the slashed and back-slashed boxes represent the

Fig. 2. Timing diagram of IO requests and NFM channel. (a) Interleaved
IO sequence. (b) Legend for channel behavior. (c) Typical NFM channel
WOCS.

occupancy of command sets, while the gray boxes represent the
occupancy of data on the channel. It means that slashed and back-
slashed boxes waste channel bandwidth. For this reason, it is obvi-
ous that reducing the command sets is one of the efficient ways
of increasing channel utilization. Interestingly, the RSE commands
(back-slashed boxes) occupies 70% of the full occupancy of the
command sets because the NFMC has to verify all active dies from
Way0 to Way2. Using RSE, the modern NFMC can detect individual
die status without connecting to R/B pins, which has the advantage
of reducing the pin count. However, as the active dies increase owing
to advanced scheduling or queuing techniques, the issuing count of
RSE increases, which negatively affects performance. This example
motivates us to reduce the RSE overhead through a tradeoff between
performance improvement and pin counts.

To realistically understand the overhead of RSE, we have tested
two commercial solid state drives (SSDs) that support nonvolitile
memory express (NVMe) over PCIe. The sequential read performance
under the deep queue depth (QD) depends on the NFM interface
speed that is a major bottleneck in NFSDs [11]. Although we cannot
uncover the internal architecture of commercial SSDs, it can be
simply conjectured by the performance and IO specification of each
SSD. To hide 4-KB tR latency of the triple level cell (TLC) [12]
and achieve a throughput of 400 Mb/s per 8-bit channel, the NFSD
should have at least six dies of busy status on 400-MB/s 8-channel of
which bandwidth is theoretically 3.2 GB/s. However, the measured
sequential read performances of the two SSDs are 2.73 and 3.02 GB/s
under QD 64, respectively, which is mainly owing to the commands
sets for driving or checking NFMs. More specifically, RSE commands
for at least six active dies consecutively monopolize channel between
every transaction. It takes at least 1.14 µs (190 ns × 6 dies) at a time,
while read or write commands normally take 150 ns. Therefore, RSE
is the major overhead as mentioned earlier.

B. Related Works

Multilevel interleaving has contributed significantly to the perfor-
mance of NFSDs. However, more effort needs to be directed toward
enhancing performance as the size of the NFM array continuously
grows. To address this issue, many interesting techniques have been
introduced, and we categorize them into three.

First, some approaches focus on page allocation to maximize IO
parallelism. The performance variation according to page allocation
schemes is covered in [2] and [3] and the enhancement of plane-level
parallelism owing to advanced commands is exploited in [2] and [4].
Second, several techniques have focused on scheduling issue. They
queue IOs in the internal buffer of the NFSD [4], [5], [7] or the buffer
of the host system [6], [8], where the IO kernel of operating system
resides. The enqueued IOs are reordered by predicting the response
time of IOs [8], [9] or the intrinsic property of the NFM [5], [10].

Even if the queueing and reordering of IOs provide higher par-
allelism, the bandwidth of the NFM interface is not fully utilized
because of the long cell operation time or auxiliary commands
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Fig. 3. Timing diagram according to the RS and CS methods. (a) Dedicated
R/B signal-based CS. (b) PCS. (c) ICS.

such as set feature. To address this limitation, the approaches
in the third category modify the NFM architectures or command
sets. Wu et al. [13] propose the suspension scheme of pro-
gram/erase to eliminate contention of read requests because of long
tPROG or tBER. Kim et al. [14] propose the multipage sized NFM to
reduce channel inefficiency owing to invalid sectors. Jeong et al. [15]
present the new read command combined with read level cycles to
reduce the issuing overhead of set feature commands. Although few
studies have attempted to mitigate the channel inefficiency owing to
commands, to the best of our knowledge, no study has investigated
the reduction of the RSE overhead, the critical factor of channel
inefficiency. The goal of this brief is, therefore, to resolve this issue.

III. IMPLEMENTATION METHODS OF CHANNEL SNEAKING

A. Typical NFM Interface Without Channel Sneaking

In Fig. 2(c), though the page program of Way0–Die0 for W1 is
completed at t1, the NFMC cannot convey the next tR command for
R3 on the channel until t2 because of the exclusive channel possession
by RSE, command sets, or the data transfer of Way1-Die1 for R1.
To formulate the RSE overhead described as examples
in Figs. 2 and 3, we define (1)–(4) generalized to the typical
NFM hierarchy with notations as summarized in Table I. These
equations are derived based on command operations and timing
parameters of ONFI specification. di (t) is “1” if data is being
transmitted on i channel at cycle time t . In WOCS and PCS, rb j (t)
indicates the status of j way. When rb j (t) is low, it indicates
that one or more dies within j way operation are in the busy
status. In contrast, when high, j way is in the ready status. When
lth transaction is completed, the NFMC knows how many RSE
commands will be issued on each channel, and the RSE issuing
count can be defined as follows in WOCS:

NRWOCS
i

(
tc
l

)=
W∑

j=0

D∑

k=0

(
1−di

(
tc
l

))·(1−rb j
(
tc
l

))·b jk
(
tc
l

)
(1)

where the number of ways and dies is W and D, respectively. For
example, assuming that the data transfer of Way1-Die1 for R1 is
lth transaction in Fig. 2(c), di (t

c
l ) becomes low at tc

l and there are
total four active dies. Therefore, NRWOCS

i (tc
l ) is 4 and the start-event

cycle time of the (l+1)th transaction, t s
l+1, should be delayed by at

least tc
l + DR(l+1s ). DR(l+1s ), the delay cycle caused by RSE,

is 304 when tRSE and tCLK are 190 and 2.5 ns, respectively. It is
generalized as follows on i channel in WOCS:

DRWOCS
i (l+1s ) = NRWOCS

i
(
tc
l
)·tRSE/tCLK (2)

TABLE I

FREQUENTLY USED NOTATIONS

where tRSE is the time for one RSE and tCLK is a clock period. The
high utilization of dies increases NRi (t

c
l ) and DRi (l+1s) of WOCS

as a result.

B. Dedicated Signal-Based Channel Sneaking
CS extends the data burst pause operation of ONFI to accelerate

interleaving and reduce latency. Fig. 3(a) shows the timing diagram
for entering the CS operation during half of the data transfer, within
the T period of Fig. 2(a). During CS, the NFMC issues tR of R3 to
the Die0 of Way0 that is in ready status at t3. Although CS requires
additional commands to resume data transfer, it reduces the total
operation time compared to the WOCS shown in Fig. 2(c).

However, the procedure illustrated in Fig. 3(a) assumes that the
way consists of only one die or multiple dies with the dedicated
CE and R/B pins, which is called dedicated signal-based CS (DCS).
Therefore, the RSE overhead of (2) does not exist in the channel.
However, as most commercial NFM packages for large capacity are
organized with shared R/B signals because of cost issue, RSE is an
inevitable overhead of the NFM interface.

C. Polling-Based Channel Sneaking
In the PCS that is intuitive implementation of CS, the NFMC

should issue RSE to check the status of dies in the way of which a
R/B signal is low, as shown in Fig 3(b). The RSE issuing count of
PCS is given as

NRPCS
i

(
tc
l
) = NRWOCS

i
(
tc
l
)

+
W∑

j=0

D∑

k=0

csi
(
tc
l
)·di

(
tc
l
)·(1−rb j

(
tc
l
))·b jk

(
tc
l
)
. (3)

When csi (t) is high, it means that CS is operating in i channel.
Because CS operates during the data transfer, it should be coupled
di (t). When csi (t

c
l )·di (t

c
l ) is high, it denotes the CS operation during

the data transfer of the i channel at time tc
l . Even if the NFMC issues

the tR of R3 to Die0 of Way0 earlier than t2 of Fig. 2(c) at t4 of
Fig. 3(b), the data transfer following tR is delayed as compared to
that in Fig. 3(a) because the RSE issuing count increases during CS.
This increment is formulated as the second term of (3). For example,
assuming that the data transfer of Way1–Die1 is lth transaction
in Fig. 3(b), NRWOCS

i (tc
l ) is 3 because there are total three active dies

between lth and (l+1)th transactions. And total four RSEs are issued
during CS of lth transaction. Therefore, NRPCS

i (tc
l ) becomes 7.

PCS has another critical problem in controlling CS. It is difficult to
determine the CS interval that can derive performance benefits from
CS. If the CS interval is excessively short, the RSE overhead will
increase, and if it is excessively long, CS is not allowed during data
transfer. To remedy the drawbacks of PCS, we propose ICS based
on an interrupt protocol.

D. Interrupt-Based Channel Sneaking
NFSDs connect R/B pins of NFMs with an open-drain circuit

in ONFI, and a pull-up resistor is used for termination as shown
in Fig. 4(a). The R/B output is only high if all dies are in ready



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 26, NO. 9, SEPTEMBER 2018 1805

Fig. 4. Implementation and timing diagrams of R/B signal. (a) Open drain
circuit of R/B connection. (b) Conventional R/B. (c) Interrupt-based R/B.

status as depicted in Fig. 4(b). The NFMC should continuously issue
RSE to confirm which die turns into ready status while the active-high
wired-AND bus is low.

In contrast, ICS reduces the number of RSE issues without
changing the open-drain circuit because the NFMC checks only dies
in the way that triggers the interrupt. Each R/B signal of the dies
connects to the active-low wired-OR bus and it works as an interrupt
source. Each die enables the R/B signal when the cell operation is
completed as shown in Fig. 4(c). At the same time, this active-low
event forces the NFMC to enter an interrupt handler. The NFMC
issues RSE to dies sharing the R/B signal until the R/B signal is
high. Each die that triggered the interrupt releases the interrupt when
the status value is read by RSE. Moreover, ICS can have one R/B
signal per channel to further reduce pin count. As ICS decreases
the RSE overhead, as shown in Fig. 3(c), it can improve channel
utilization when the channel is idle as well as during CS. In the ICS
scheme, the RSE count is represented as follows:

NRICS
i

(
tc
l
) =

W∑

j=0

D∑

k=0

(
1−rb j

(
tc
l
))·b jk

(
tc
l
)

(4)

where rb j (t
c
l ) indicates whether j way has triggered an active-low

interrupt. During the data transfer, ICS verifies active dies within
ways that triggered the interrupt through CS operation. If a channel
is idle, ICS immediately verifies active dies within ways that triggered
the interrupt. Therefore, NRICS

i (tc
l ) is the sum of the cycles required

to verify only active dies within ways that trigger the interrupt until
tc
l regardless di (t

c
l ). In contrast, NRWOCS

i (tc
l ) and NRPCS

i (tc
l ) are

the sum of the cycles to verify all active dies at tc
l . If the data

transfer of Way1–Die1 is lth transaction, NRICS
i (tc

l ) is 2 because
there are two RSE commands requested by two interrupts between
the lth and (l+1)th transaction. Although ICS should modify the
peripheral circuits of NFM to set the R/B signal according to the RSE
command and the die status, this modification can be implemented
with simple AND or OR gates. ICS also requires additional time
to handle interrupt; however, it is tens of nanoseconds, which is
negligible compared to the RSE overhead.

IV. EXPERIMENTS

A. Experimental Setup

To evaluate the performance improvement of the proposed
schemes, we added (1)–(4) into the trace-driven simulator employed
in [2] and [7] by applying the timing parameters of ONFI. We also
modified the scheduler and the performance calculator of the existing
simulator to implement the RSE overhead. In addition, we modified
the simulator to apply TLC NFMs that are widely adopted for
NFSDs. We also implemented the high-speed program algorithm [15]
with TLC timing parameters [12] as summarized in Table II. Each
scheme used the same queuing and allocation method for fair
comparison. Moreover, to evaluate our approaches under various
environments, we collected workloads from real applications as sum-
marized in Table III. Various traces for mobile, server, and database
systems were from [16]. The online transaction processing and
search-engine IO trace were obtained from [17]. We also collected
synthetic traces and typical PC traces using benchmark programs
under a win7 system.

TABLE II

NFM AND TIMING PARAMETERS IN SIMULATION

TABLE III

EXPERIMENTAL WORKLOADS INFORMATION

B. Performance Results

To quantify performance, we classified workloads with two per-
formance metrics, IOs per second (IOPS) and throughput (GB/s),
according to the variance of the IO size. Typically, as IOPS are
measured with a constant transfer size, we evaluated the average
throughput in workloads whose IO sizes have large variance. In addi-
tion, as the NFM interface speed and the number of dies have
gradually increased for high-performance and large-capacity NFSDs,
we explored performance trends according to these.

1) Average IOPS and Throughput: DCS provided the best perfor-
mance because this scheme fully utilizes the benefit of CS without
the channel overhead caused by RSE. Therefore, the IOPS and the
throughput of each scheme were normalized to DCS. Fig. 5 shows
the performance comparison on the NFM interface with a transfer
rate of 666 Mb/s in the 8-channel, 8-way, and 4-die configurations.
WOCS and PCS reduced average IOPS compared to DCS by 12% and
20%, respectively, for all workloads shown in Fig. 5(a). In contrast,
performance degradation of ICS was 1.2% compared to DCS, which
was negligible. These trends were also observed in workloads whose
throughput was measured, as shown in Fig. 5(b). Interestingly, PCS
had slightly higher IOPS than WOCS in Fin. This was because the
RSE overhead during CS was marginal in read-intensive workloads
with small size requests, and the early issue of cell operations reduced
the response time. However, as the die array extended, the RSE during
CS became the critical overhead even in Fin.

In addition, quality of service (QoS) of ICS was better than WOCS
and PCS. We exploited confidence plot widely used as a QoS metric.
In Rand1, the response time of ICS at 99.99% of total host IOs is
2.28 ms, which is close to 2.26 ms of DCS. In contrast, those of
WOCS and PCS are 2.39 and 2.40 ms, respectively.

2) Sensitivity Analysis With Respect to Die Expansion: The growth
of dies can increase the absolute capacity and performance of
NFSDs, as described in Section II-A. However, this expansion of
dies widens the performance gap from the ideal method, as shown
in Fig. 6. Each scheme is normalized to DCS according to the
die expansion under the same NFM hierarchy and the same data
rate. Line graphs indicate the average values of IOPS or throughput
in all workloads. In Fig. 6(a), as dies increase, WOCS and PCS
show significant performance degradation (up to 18.7% and 26.9%,
respectively). In contrast, the die expansion had a marginal impact
(up to 1.7%) on performance degradation in ICS. The IOPS drop
was larger than the bandwidth drop, as workloads whose IOPS was
measured had relatively small size requests and these workloads
had higher chip utilization than the workloads whose bandwidth
was measured. In Fig. 6(b), the performance variation was slightly
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Fig. 5. Performance comparison for workloads at 666-Mb/s data transfer rate on 8-channel, 8-way, and 4-die. (a) IOPS comparison. (b) Throughput comparison.

Fig. 6. Performance sensitivity with respect to the expansion of dies.
(a) IOPS comparison. (b) Throughput comparison.

Fig. 7. Performance sensitivity with respect to the data transfer rate.
(a) IOPS comparison. (b) Throughput comparison.

between four dies and eight dies. This is because 4-die interleaving
is the maximum limit that can hide cell operations in corresponding
workloads.

3) Sensitivity Analysis With Respect to Data Transfer Rate: A
data transfer rate on channels is a critical factor in the NFSD
performance. DDR2/3 standard supports IO speeds of up to 800 Mb/s.
In contrast, at 100 Mb/s, the transfer rate of command or address is
constant, as command and address are unprotected, and therefore,
more vulnerable to errors. Therefore, as the IO speed raises, RSE
increases its share of the channel, i.e., the number of RSE per certain
time increases on channels. Fig. 7 shows performance variation
according to the data transfer rate. As expected, the IOPS and
throughput gradually decreased as the transfer rate increased, except
for the 2-die configuration. In the 2-die configuration, die interleaving
was not accelerated even when the transfer was raised from 666 to
800 Mb/s. In Fig. 7(a), WOCS and PCS reduced the IOPS compared
to DCS by up to 18.7% and 26.9%, respectively, while ICS decreased
the IOPS by only a maximum value of 1.7%. In the throughput results
shown in Fig. 7(b), performance degradation of ICS, WOCS, and PCS
were up to 1.6%, 13.1%, and 23.8%, respectively.

V. CONCLUSION

In this brief, we revisited the data burst pause of an NFM specifi-
cation, and extended it to support CS that enables the early issue of
NFM cell operations. Moreover, to reduce the RSE overhead incurred
during CS, we have proposed ICS through a simple protocol change

without modifying the NFM interface. In the experimental results,
conventional WOCS and PCS reduced IOPS compared to the ideal
method by up to 18.7% and 26.9%, respectively. On the other hand,
the performance degradation of ICS was less than 1.7% in all NFM
configurations, which was close to the ideal performance. In addition,
the performance drop of ICS according to the increase in die and
NFM IO speed-up was marginal (up to 1.7%), while those of WOCS
and PCS significantly increased. Consequently, these results show
that the proposed scheme is an effective solution for the latest tech-
nological trends of NFSD with increasing capacity and throughput.
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